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Abstract
A class of supersymmetric bound-state problems which represent the coupling
of a two-level atom or molecule with a quantum-deformed shape-invariant
potential system is introduced. We study the quantum dynamics of the partial
entropies and the entanglement of the bipartite system as well as the excitation
of the two-level atom for two possible forms of the pure initial state of the
coupled system.

PACS numbers: 03.65.Fd, 03.65.Ge, 02.20.−a, 03.67.Mn

1. Introduction

Recognized as one of the most striking features of quantum mechanics, the entanglement
phenomenon has been extensively studied in recent years. This interest is due to: (i)
its applications in the quantum information processing such as quantum computing [1],
teleportation [2], cryptography [3], dense coding [4] and entanglement swapping [5]; (ii) its
potential ability to give new insights into understanding many physical phenomena including
super-radiance [6], superconductivity [7], disordered systems [8], etc. Because of its sensitivity
to all moments of the density operator, one very useful operational tool to quantify the
entanglement of a given quantum systems is the entropy. The concept of entropy, coming
from thermodynamics, has been reconsidered recently in the context of quantum information
theory because of its connection to the entanglement of the system.

On the other hand, the development of quantum groups and quantum algebras motived
great interest in q-deformed algebraic structures. Quantum groups and algebras have their
origin in the quantum inverse problem method [9] and the first structure appeared in the studies
of solutions to the Yang–Baxter equation [10]. The quantum Yang–Baxter equation is by now
known to play a profound role in a variety of diverse problems in theoretical physics [11, 12].
Quantum algebras are deformed versions of the usual Lie algebras obtained by introducing
a deformation parameter q. In this sense, the quantum algebras provide us with a class of
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symmetries which is richer than the usual Lie symmetries; the latter is contained in the former
as a special case (when q → 1). Until now quantum groups have found applications in solid-
state physics [13], nuclear physics [14, 15], quantum optics [16], conformal field theories [17]
and more formal mathematical problems.

We know that fully solvable models in quantum theory are so rare that they are worth
studying in their own right. Although they are in general oversimplified, their solutions give a
clear understanding of the physical phenomena studied and, as a first approach, make it possible
to control some approximations indispensable for the treatment of more realistic models. The
coupled-channel models based on the dipole and rotating wave approximations are examples
of such a restricted set of solvable models. The simplicity, analyticity and strong correlation
which develop dynamically among the subsystems during their interaction make these coupled-
channel models excellent laboratories for investigating the quantum entanglement. In spite of
their apparent simplicity, they exhibit a quite complicated behaviour and fully quantum-
mechanical effects that are strongly dependent on the initial conditions of the system.
The Jaynes–Cummings model [18], extensively used with success in quantum optics [19]
in the description of a single two-level atom or molecule resonantly coupled to a single mode
of the quantized electromagnetic field is the most known example of this sort.

In this paper we introduce a class of supersymmetric coupled-channel problems based
on the dipole and rotating wave approximations, consisting of a quantum deformed and
shape-invariant system [20] interacting with a two-level atom or a molecule. This is a non-
trivial coupled-channel problem which may find applications in molecular, atomic and nuclear
physics. We introduce the q-deformed supersymmetric and shape-invariant Hamiltonian of
the coupled-channel system and evaluate the dynamical evolution of the system and partial
entropies of the subsystems in terms of the deformation parameter q. We consider two possible
forms for the initial quantum state of the q-deformed shape-invariant potential system: a purely
coherent and a purely squeezed states.

For the sake of completeness we will briefly present the fundamental principles of the
algebraic formulation to shape invariance and the basic facts of the algebraic quantum deformed
shape-invariant model in section 2. In section 3, we introduce the Hamiltonian of the coupled
system and obtain its time evolution operator and the density operator; in section 4 we obtain
the temporal behavior of the population inversion factor and the coupling potential partial
entropy; in section 5 we apply our generalized results for a quantum deformed Pöschl–Teller
potential system, discussing the relevant aspects of the time behavior of each observable as a
function of the deformation parameter q. Conclusions are given in section 6.

2. Algebraic formulation for quantum deformation shape-invariant systems

Recently, the use of the operator techniques based on algebraic models [21–24] brought
renewed interest to the study of shape-invariant systems. Coupled with the supersymmetry
concept, the algebraic formulation of the shape invariance has proved to be a powerful and
elegant quantum technique to exactly solve a set of potential systems with applications in
molecular, atomic and nuclear physics. These techniques deal with one-dimensional partner
Hamiltonians Ĥ±, written in terms of the operator Â(a1) ≡ 1√

h̄�

{
W(a1; x) + i√

2M
p̂x

}
and its

adjoint operator as

Ĥ− = p̂2
x

2M
+ V−(a1; x) = h̄�Â†(a1)Â(a1) and

Ĥ + = p̂2
x

2M
+ V+(a1; x) = h̄�Â(a1)Â

†(a1)

(1)

2
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where a1 is a set of potential parameters, h̄� is a constant energy scale factor and the
superpotential W(a1; x) is a real function related to the partner potentials via V±(a1; x) =
W 2(a1; x) ± h̄√

2M
dW(a1; x)/dx. Introducing the parameter translation operator T̂ and the

similarity transformation T̂ Ô(a1)T̂
† = Ô(a2) that replaces a1 with a2 in a given operator or

function and the operators [21]

B̂+ = Â†(a1)T̂ and B̂− = B̂†
+ = T̂ †Â(a1) (2)

the partner Hamiltonians in (1) take the forms Ĥ− = h̄�Ĥ− and Ĥ + = h̄�T̂ Ĥ+T̂
†, where

Ĥ± = B̂∓B̂±. With these definitions, the condition of shape invariance Â(a1)Â
†(a1) =

Â†(a2)Â(a2) + R(a1), first obtained in [25], can be written as the commutation relation

[B̂−, B̂+] = T̂ †R(a1)T̂ ≡ R(a0). (3)

In the cases studied so far, the parameters a1 and a2 are related by either a translation [21, 26] or
a scaling [24, 27, 28]. Since the ground state of the Hamiltonian Ĥ− satisfies the annihilation
condition Â|0〉 = 0 = B̂−|0〉, then using the additional relations B̂±R(an) = R(an±1)B̂± it
is possible to obtain the eigenvalue equation Ĥ−|n〉 = en|n〉 and Ĥ+|n〉 = {en + R(a0)} |n〉
where the normalized nth excited eigenstate |n〉 = K̂n

+ |0〉 can be obtained from the ground
state by the action of the raising operator K̂+ ≡ 1√

Ĥ−
B̂+ and the related eigenvalues are given

by

e0 = 0 and en =
n∑

k=1

R(ak), for n � 1. (4)

With the above results above it is possible to show that

B̂+|n〉 = √
en+1|n + 1〉 and B̂−|n〉 =

√
en−1 + R(a0)|n − 1〉, (5)

making clear the ladder nature of the operators B̂± when applied on the eigenstates
{|n〉; n = 0, 1, 2, . . .} of Ĥ−.

The study of quantum deformed systems other than the harmonic oscillator is very recent
and presents new and interesting aspects. There is an alternative quantum deformed model
developed for shape-invariant systems which, unlike the others, preserve the shape invariance
condition after the deformation process [29]. The results obtained with this model can be
summarized by introducing the real parameter q (0 < q � 1) and defining the quantum
deformed ladder operators

Ŝ
(q)
− = Fqq

1
2 Ĥ+B̂

(q)
− = FqB̂

(q)
− q

1
2 Ĥ− and

Ŝ
(q)
+ = Ŝ

(q)†
− = q

1
2 Ĥ−B̂

(q)
+ Fq = B̂

(q)
+ q

1
2 Ĥ+Fq

(6)

where Fq is a compact notation for a real functional of (a0, a1, a2, . . .). The standard q-
deformed form for B̂±

B̂
(q)
± ≡ {

B̂
(q)
∓

}† = B̂±

√
[Ĥ±]q
Ĥ±

=
√

[Ĥ∓]q
Ĥ∓

B̂± (7)

is defined with the q-operators extension of the q-number definition [x]q ≡ (qx − q−x)/(q −
q−1) and the property B̂±f (Ĥ±) = f (Ĥ∓)B̂±, valid for any analytical function f (x).
Assuming that the functional Fq satisfies the constraint

T̂Fq T̂
† = qR(a0)Fq (8)

and taking into account the operator relation (q − q−1)qĤ∓ [Ĥ±]q = q(Ĥ++Ĥ−) − q∓R(a0) we
can obtain the commutator[

Ŝ
(q)
− , Ŝ

(q)
+

] = G(q)

0 where G(q)

0 ≡ F2
q qR(a0)[R(a0)]q . (9)

3
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Comparing equations (3) and (9) we conclude that the latter can be associated with a shape-
invariance condition as the former with the remainder R(a0) replaced by G(q)

0 . Commutator
(9) suggests that Ŝ

(q)
− and Ŝ

(q)
+ are the appropriate creation and annihilation operators for the

spectra of the q-deformed shape-invariant systems whose partner Hamiltonians are defined as

Ĥ(q)
− ≡ Ŝ

(q)
+ Ŝ

(q)
− = q2R(a0)F2

q qĤ− [Ĥ−]q and Ĥ(q)
+ ≡ Ŝ

(q)
− Ŝ

(q)
+ = F2

q qĤ+ [Ĥ+]q . (10)

Taking into account that [Ĥ−,G(q)

0 ] = 0 = [Ĥ−,Fq] and expression (10) we can show
that [Ĥ−, Ĥ(q)

− ] = 0 and thus these Hamiltonians have the common set of eigenstates
{|n〉; n = 0, 1, 2, . . .}. The eigenvalues of Ĥ(q)

− can be obtained by using definitions (6),
(7), (10) and equation (9) to write the additional commutation relations[

Ĥ(q)
− ,

(
Ŝ

(q)
+

)n] = +
{
G(q)

1 + G(q)

2 + · · · + G(q)
n

}(
Ŝ

(q)
+

)n
,[

Ĥ(q)
− ,

(
Ŝ

(q)
−

)n] = −(
Ŝ

(q)
−

)n{
G(q)

1 + G(q)

2 + · · · + G(q)
n

} (11)

where G(q)

k = T̂ G(q)

k−1T̂
†. From the ground-state annihilation condition Ŝ

(q)
− |0〉 = 0 and

commutators (9) and (11) it follows that

Ĥ(q)
−

{(
Ŝ

(q)
+

)n|0〉} = {
G(q)

1 + G(q)

2 + · · · + G(q)
n

}{(
Ŝ

(q)
+

)n|0〉} = E (q)
n

{(
Ŝ

(q)
+

)n|0〉} (12)

Ĥ(q)
+

{(
Ŝ

(q)
+

)n|0〉} = {
G(q)

0 + G(q)

1 + · · · + G(q)
n

}{(
Ŝ

(q)
+

)n|0〉} = A(q)
n

{(
Ŝ

(q)
+

)n|0〉} (13)

i.e., |n〉 ∝ (
Ŝ

(q)
+

)n|0〉 is an eigenstate of the Hamiltonians Ĥ(q)
∓ with the eigenvalues

E (q)
n =

n∑
k=1

G(q)

k =
n∑

k=1

T̂ kF2
q T̂ †kqR(ak) [R(ak)]q = F2

q q{en+2R(a0)}[en]q (14)

A(q)
n =

n∑
k=0

G(q)

k =
n∑

k=0

T̂ kF2
q T̂ †kqR(ak) [R(ak)]q = F2

q q{en+R(a0)}[en + R(a0)]q (15)

where, to get these final expressions, we used the generalization of the condition in
equation (8)

T̂ kFq T̂
†k =

k−1∏
j=0

qR(aj )Fq . (16)

Note that, via the identity R(an) = T̂ R(an−1)T̂
† and condition (8), the two eigenvalues are

related by E (q)
n = T̂A(q)

n−1T̂
†. The ladder character of the operators Ŝ

(q)
± when acting on |n〉

follows from the relations

Ŝ
(q)
+ |n〉 =

√
E (q)

n+1|n + 1〉 and Ŝ
(q)
− |n〉 =

√
A(q)

n−1|n − 1〉, (17)

obtained from the results above. In addition to the commutators in (11), we can establish the
commutation relations[
Ŝ

(q)
+ ,G(q)

j

] = {
G(q)

j+1 − G(q)

j

}
Ŝ

(q)
+ ,

[
Ŝ

(q)
+ ,

[
Ŝ

(q)
+ ,G(q)

j

]] = {
G(q)

j+2 − 2G(q)

j+1 + G(q)

j

}(
Ŝ

(q)
+

)2
,

(18)

and, in general, for the commutator of nth order we have

[
Ŝ

(q)
+ ,

[
Ŝ

(q)
+ ,

[
Ŝ

(q)
+ , . . . ,

[
Ŝ

(q)
+ ,

[
Ŝ

(q)
+ ,G(q)

j

]] · · · ]]]
︸ ︷︷ ︸

sequence of n commutation operations

=
{

n∑
k=0

(−1)k
(n

k

)
G(q)

j+n−k

} (
Ŝ

(q)
+

)n
(19)

4
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which, with their adjoint commutation relations and equation (9), form an infinite-dimensional
Lie algebra, realized here in a unitary representation.

For most shape-invariant systems we found that [29] limq→1 Fq = 1. Thus taking into
account the q-number definition and its limit when q → 1, it is straightforward to show that
limq→1 Ŝ

(q)
± = B̂± and the whole q-deformed algebraic formalism presented here reduces to

that developed for the operators B̂± [21].

3. A two-level atom coupled to a quantum deformed shape-invariant potential system

3.1. Hamiltonian

We consider in this study two interacting systems consisting of a single two-level atom or
molecule coupled with a quantum deformed shape-invariant system which is associated with
the ladder operators Ŝ

(q)
+ and Ŝ

(q)
− . The total Hamiltonian describing this coupled system may

be written as Ĥ
(q)

T = Ĥ A + Ĥ
(q)

P + Ĥ
(q)

ξ , where Ĥ A is the free atom Hamiltonian, Ĥ
(q)

P is

the Hamiltonian related to the quantum deformed shape-invariant potential system and Ĥ
(q)

ξ

is the atom-potential interaction Hamiltonian. In treating a two-level system with a lower
state |−〉 and an upper state |+〉 we can introduce the excitation σ̂+ ≡ |+〉〈−| and de-excitation
σ̂− ≡ |−〉〈+| operators as well as the inversion operator σ̂3 ≡ |+〉〈+|−|−〉〈−| which satisfy the
commutation relations [σ̂+, σ̂−] = σ̂3 and [σ̂3, σ̂±] = ±2σ̂±. By assuming a two-dimensional
spinor representation for the eigenstates of the atomic system

χ− ≡ 〈χ |−〉 =
[

0
1

]
and χ+ ≡ 〈χ |+〉 =

[
1
0

]
(20)

it is straightforward to verify that these operators will be represented by the 2 × 2 matrices

σ̂+ = χ+χ
†
− =

[
0 1
0 0

]
, σ̂− = χ−χ †

+ =
[

0 0
1 0

]
and

σ̂3 = χ+χ
†
+ − χ−χ

†
− =

[
1 0
0 −1

]
.

(21)

Thus if we define the polarization matrices σ̂1 ≡ σ̂− + σ̂+ and σ̂2 ≡ i(σ̂− − σ̂+) we obtain
the Pauli matrices σ̂i , for i = 1, 2 and 3. If we consider that the eigenstates |±〉 of the
Hamiltonian Ĥ A of a non-interacting two-level atom form a normalized basis then we must
have 〈±|±〉 = 1, 〈±|∓〉 = 0 and |+〉〈+| + |−〉〈−| = 1̂1. Therefore, using these relations
together with the eigenvalue equation Ĥ A|±〉 = h̄ω±|±〉 it is possible to write the free atom
Hamiltonian in the form

Ĥ A = 1̂1Ĥ A1̂1 = h̄ (ω+σ̂+σ̂− + ω−σ̂−σ̂+) (22)

where the projection operators π̂± ≡ |±〉〈±| = σ̂±σ̂∓ describe the population of the levels ±
whose energies are h̄ω±.

The Hamiltonian related to the quantum-deformed shape-invariant potential system is
assumed to have the form

Ĥ
(q)

P = h̄�
(
Ĥ(q)

+ σ̂+σ̂− + Ĥ(q)
− σ̂−σ̂+

)
. (23)

We write the atom-potential interaction Hamiltonian as Ĥ
(q)

ξ = Ĥ� + Ŵ (q)

ξ . The term Ŵ (q)

ξ is
constructed using the requirements imposed by the dipole and rotating wave approximations,
the form of which reads

Ŵ (q)

ξ = h̄g
(
Ŝ

(q)
− σ̂+ + Ŝ

(q)
+ σ̂−

)
(24)

where g is a real constant coupling strength. The detuning term is given by Ĥ� = h̄�σ̂3, with
� being a constant.

5
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3.2. Model superalgebra

Introducing the quantum deformed supercharge operator Q̂q = Ŝ
(q)
− σ̂+ and its adjoint operator

Q̂†
q = Ŝ

(q)
+ σ̂−, it is possible to rewrite the terms Ĥ

(q)

P and Ĥ
(q)

ξ of the coupled system

Hamiltonian Ĥ
(q)

T as

Ĥ
(q)

P = h̄�
{
Q̂q, Q̂†

q

}
and Ĥ

(q)

ξ = Ĥ� + h̄g
(
Q̂q + Q̂†

q

)
(25)

and to verify the commutation and anti-commutation relations[
Q̂q, Ĥ

(q)

P

] = [
Q̂†

q, Ĥ
(q)

P

] = 0 and
{
Q̂q, Q̂q

} = {
Q̂†

q, Q̂†
q

} = 0. (26)

The commutation relations characterize the supersymmetric nature of the quantum deformed
Hamiltonian Ĥ

(q)

P , with the operators Q̂q and Q̂†
q as its generators. The anti-commutation

relations express the fermionic character of the quantum deformed supercharge operators.
Equation (25) closes the graded Lie algebra with the anti-commutators of Q̂q with Q̂†

q . The
quantum deformed supercharge Q̂q is interpreted as the operator which changes quantum
deformed bosonic degrees of freedom into fermionic ones and vice versa. Because of the form
presented by the interaction Hamiltonian Ĥ

(q)

ξ in (25), we conclude that the operator Q̂q and

its adjoint operator Q̂†
q are responsible, respectively, for the heating and cooling process of the

coupled system. On the other hand, taking into account commutation relations (26), we can
prove that

[
Ĥ

(q)

ξ , Ĥ
(q)

P

] = 0, and thus it is possible to find a common set of eigenstates for
these Hamiltonians.

An important extension of the models based on the dipole and rotating wave
approximations employs an intensity-dependent interaction between the subsystems [30].
This intensity-dependent interaction makes the enhancement of certain quantum effects
possible which would otherwise be difficult to note within the realm of usual interaction
model [31, 32]. The intensity-dependent generalization of our model can be constructed by
replacing the supercharge and its adjoint operators in the interaction Hamiltonian Ĥ

(q)

ξ by

Q̂q → Ŝ
(q)
−

√
Ĥ(q)

− σ̂+ and Q̂†
q →

√
Ĥ(q)

− Ŝ
(q)
+ σ̂−. It is easy to verify that the common eigenstates

commutation relation
[
Ĥ

(q)

ξ , Ĥ
(q)

P

] = 0 is preserved in this case.

3.3. Time-evolution operator and the state of the coupled system

By using the Hamiltonian Ĥ
(q)

T presented above we can write the Schrödinger equation for the
coupled system as

Ĥ
(q)

T |�q(t)〉 = ih̄
∂

∂t
|�q(t)〉. (27)

However, individual terms of the coupled-system total Hamiltonian Ĥ
(q)

T satisfy the general
commutation relations

[
Ĥ A, Ĥ

(q)

P

] = [
Ĥ

(q)

P , Ĥ�

] = [
Ĥ

(q)

P , Ŵ (q)

ξ

] = 0 and, for the case when

� = 1
2 (ω− − ω+), it is also easy to verify that

[
(Ĥ A + Ĥ�), Ŵ (q)

ξ

] = 0. Therefore, under this
resonant condition, if we write the wave state |�q(t)〉 as

|�q(t)〉 = exp
(−iĤ (q)

0 t
/
h̄

)|ψq(t)〉, with Ĥ
(q)

0 = Ĥ A + Ĥ� + Ĥ
(q)

P (28)

and insert it into (27) we obtain

Ŵ (q)

ξ |ψq(t)〉 = ih̄
∂

∂t
|ψq(t)〉. (29)

6
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Introducing the time-evolution operator Ûq(t, 0) such as |ψq(t)〉 = Ûq(t, 0)|ψ(0)〉, where
|ψ(0)〉 is an arbitrary initial state, and inserting this definition into equation (29), we find

Ŵ (q)

ξ Ûq(t, 0) = ih̄
∂

∂t
Ûq(t, 0). (30)

Since the Hamiltonian term Ŵ (q)

ξ is time independent, the solution of (30) satisfying the initial

condition Ûq(0, 0) = 1̂1 can be written formally as Ûq(t, 0) = exp (−iŴ (q)

ξ t/h̄). Using the

series expansion of the exponential function, expression (24) for Ŵ (q)

ξ and the properties of the
σ̂±-operators, it is possible to obtain the analytic expression for the time-evolution operator

Ûq(t, 0) = σ̂+σ̂− cos
(
gµ̂

(q)
+ t

)
+ σ̂−σ̂+ cos (gµ̂

(q)
− t)

+ σ̂+K̂†
q{sin (gµ̂

(q)
− t)} − σ̂−{sin (gµ̂

(q)
− t)}K̂q (31)

where

µ̂
(q)
± =

√
Ĥ(q)

± and K̂q = i√
Ĥ(q)

−
Ŝ

(q)
+ . (32)

Note that in the intensity-dependent model the operators µ̂
(q)
± in the argument of the

trigonometric functions in (31) must be replaced by µ̂
(q)
± → Ĥ(q)

± . Using the expression
of the time-evolution operator Ûq(t, 0) we can write the final expression for the wave state of
the coupled system as

|�q(t)〉 = exp
(−iĤ (q)

0 t
/
h̄

)
Ûq(t, 0)|ψ(0)〉, (33)

which is still valid for any quantum-deformed shape-invariant potential system.

3.4. The density operator

A simple and elegant way of incorporating statistical distributions of the initial conditions into
quantum dynamics of the coupled system is to represent the state of the quantum system by
using the Hermitian density operator, defined as ρ̂(t) = |�(t)〉〈�(t)|. At any time t > 0, the
time evolution of ρ̂(t) is given by the Liouville equation of motion ih̄dρ̂(t)/dt = [Ĥ (t), ρ̂(t)].
Knowledge of ρ̂(t) enables us to obtain the expectation value of any observable Ô through

〈Ô(t)〉 = Tr{ρ̂(t)Ô}
Tr{ρ̂(t)} . (34)

Applying this formalism to our quantum deformed coupled problem we use the state vector (33)
and the commutation relations presented at the beginning of the previous section, involving
the terms of total Hamiltonian Ĥ

(q)

0 , to obtain

ρ̂(q; t) = exp
(−iĤ (q)

P t/h̄
)
Ûq(t, 0)ρ̂0Û

†
q (t, 0) exp

(
iĤ (q)

P t
/
h̄

)
, where

ρ̂0 = |ψ(0)〉〈ψ(0)|.
(35)

In the analysis of the dynamics of the coupled system it is very instructive to assume that
at time t = 0 its quantum state is uncorrelated, i.e., it is described by a pure state obtained
as a direct product |ψ(0)〉 = |β〉 ⊗ |ϕ〉 of the initial states |β〉 of two-level atom and |ϕ〉 the
quantum deformed coupling potential. Many details of the dynamics of the coupled system
strongly depend on its initial condition, and in order to understand the global influence of the
quantum-deformed shape-invariant potential on the system dynamics we consider at t = 0 that
the two-level atom is in the lower state |β〉 = |−〉 and the quantum deformed shape-invariant
potential system is in a purely coherent state |ϕ〉 = |z〉C or, as a second possibility, in a purely

7
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squeezed state |ϕ〉 = |z〉S. (It is worth recalling that coherent states are considered to be the
quantum states which most closely approach the classical limit.) The purely coherent [33]
and squeezed [34] states for quantum deformed shape-invariant systems can be obtained, in a
generalized way, by an expansion in the basis {|n〉; n = 0, 1, 2, . . .}

|z; q; ar〉C =
∞∑

n=0

{
zn

h
(C)
n (q; ar)

}
|n〉 and |z; q; ar〉S =

∞∑
n=0

{
zn

h
(S)
n (q; ar)

}
|2n〉

(36)

where the expansion coefficients h(C,S)
n (q; ar) are given by h

(C,S)
0 (q; ar) = 1, and for n � 1,

h(C)
n (q; ar) =

n−1∏
k=0

⎧⎨
⎩

√
�

(C)
nk (q)

Z(q)

r+k

⎫⎬
⎭ , with �

(C)
nk (q) = q2R(a0)F2

q qen+ek [en − ek]q (37)

while

h(S)
n (q; ar) =

n−1∏
k=0

⎧⎨
⎩

√
�

(S)
nk (q)

Z(q)

r+2k

⎫⎬
⎭ , with �

(S)
nk (q) = q−R(a2k+1)

[e2n − e2k]q
[e2n − e2k+1]q

. (38)

In these expressions Z(q)

r+k = T̂ kZ(q)
r T̂ †k, where Z(q)

r ≡ Z(q; a1, a2, a3, . . .) is an arbitrary
complex functional. Under these assumptions the initial state of the coupled system is
described by

|ψ(0)〉C =
∞∑

n=0

b(C)
n (q; ar)|n〉 ⊗ |−〉 or |ψ(0)〉S =

∞∑
n=0

b(S)
n (q; ar)|2n〉 ⊗ |−〉,

(39)

where

b(X)
n (q; ar) = zn

h
(X)
n (q; ar)

∈ lC, with X = C or S. (40)

Using the property

Ŝ
(q)
± f

(
Ĥ(q)

±
) = f

(
Ĥ(q)

∓
)
S

(q)
± , (41)

valid for any analytical function f (x), the resonant condition � = 1
2 (ω− − ω+), and

expression (39) to get ρ̂
(X)
0 , it is possible to show that the time-evolved density operator

(35) can be explicitly expressed in the matrix form

ρ̂(X)(q; t) = 1

N (q)

X

[∣∣D(q)

X (t)
〉 〈
D(q)

X (t)
∣∣ ∣∣D(q)

X (t)
〉 〈
C(q)

X (t)
∣∣∣∣C(q)

X (t)
〉 〈
D(q)

X (t)
∣∣ ∣∣C(q)

X (t)
〉 〈
C(q)

X (t)
∣∣

]
(42)

where the factor

N (q)

X =X 〈ψ(0)|ψ(0)〉X =
∞∑

n=0

∣∣b(X)
n (q; ar)

∣∣2
(43)

was introduced to satisfy the normalization condition Tr{ρ̂(X)(q; t)} = 1. The time-dependent
states which compose the elements of the matrix ρ̂(X)(q; t) are expressed by∣∣C(q)

X (t)
〉 = e−i�Ĥ(q)

− tcos(gµ̂
(q)
− t)|z; q; ar〉X and∣∣D(q)

X (t)
〉 = K̂†

q e−i�Ĥ(q)
− tsin(gµ̂

(q)
− t)|z; q; ar〉X.

(44)

8
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In order to explore the dynamics of each subsystem which composes the coupled system
we need to calculate, from the density operator ρ̂(X)(q; t), the reduced density operator for
either the atom or the quantum deformed coupling potential. Tracing out the coupling potential
degrees of freedom ρ̂

(X)
A (q; t) = TrP{ρ̂(X)(q; t)}, we obtain the reduced 2 × 2 atomic density

matrix ρ̂
(X)
A (q; t) whose elements are given by

{
ρ̂

(X)
A (q; t)

}
jk

=
∞∑

n=0

〈n|{ρ̂(X)(q; t)}jk|n〉. (45)

Similarly the coupling potential reduced density operator, obtained from ρ̂
(X)
P (q; t) =

TrA{ρ̂(X)(q; t)}, gives

ρ̂
(X)
P (q; t) = {ρ̂(X)(q; t)}11 + {ρ̂(X)(q; t)}22 = 1

N (q)

X

{∣∣C(q)

X (t)
〉 〈
C(q)

X (t)
∣∣ +

∣∣D(q)

X (t)
〉〈
D(q)

X (t)
∣∣}.
(46)

4. Temporal behavior of the quantum dynamical variables

4.1. Population inversion factor

The simplest nontrivial physical quantity used to analyse the quantum dynamic behavior of
a coupled two-level system is the population inversion factor. This quantity, also called the
degree of excitation of the system, is defined as Ŵ ≡ σ̂+σ̂− − σ̂−σ̂+ = σ̂3, and represents the
difference between the population of the excited and the ground atomic states. In this case,
inserting the time-evolved density operator (35) into equation (34) and taking into account the
commutation relation between Ĥ

(q)

P and σ̂3, we obtain the expectation value

〈ŴX(q; t)〉 = X〈ψ(0)|ρ̂(X)
0 Û

†
q (t, 0)σ̂3Ûq(t, 0)|ψ(0)〉X

X〈ψ(0)|ρ̂(X)
0 |ψ(0)〉X

. (47)

By using property (41) and equation (31) for Ûq(t, 0) in (47), we can show that

〈ŴX(q; t)〉 = X

〈
ψ(0)

∣∣∣∣∣
[

cos(2gµ̂
(q)
+ t) K̂†

q{sin(2gµ̂
(q)
− t)}

{sin(2gµ̂
(q)
− t)}K̂q −cos(2gµ̂

(q)
− t)

]∣∣∣∣∣ ψ(0)

〉
X

/
X〈ψ(0)|ψ(0)〉X

(48)

and when we consider the initial state of the system (39) in (48) we find the general expression

〈ŴX(q; t)〉 = −
∞∑

n,n′=0

b(X)∗
n (q; ar)b

(X)
n′ (q; ar)〈n|cos(2gµ̂

(q)
− t)|n′〉

/ ∞∑
n=0

∣∣b(X)
n (q; ar)

∣∣2
. (49)

To obtain a final expression we use the series expansion of the cosine function, expressions
(12), (32) and the commutation between any function of an and the operators Ĥ(q)

± , to get

〈ŴX(q; t)〉 = −
∞∑

n=0

p(X)
n (q) cos

{
2θ(X)

n (q; t)
}

where

p(X)
n (q) = ∣∣b(X)

n (q; ar)
∣∣2

/ ∞∑
n=0

∣∣b(X)
n (q; ar)

∣∣2
.

(50)

In this case, the cosine function argument factors θ(X)
n (q; t) are given by

θ(C)
n (q; t) = gt

√
E (q)

n and θ(S)
n (q; t) = gt

√
E (q)

2n . (51)

9
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To conclude this section we observe that:

• the dynamics of 〈ŴX(q; t)〉, given by relation (50), is obtained as a sum of contributions
from which the time-independent weight p(X)

n (q) is determined by the initial state of the
coupling potential. The influence of the interaction appears in these contributions only in
the argument factors θ(X)

n (q; t) of the time-dependent circular functions;
• the weight p(X)

n (q) gives the probability of finding the eigenstate |n〉 of the Hamiltonian
Ĥ(q)

− in the quantum deformed coherent or squeezed states |z; q; ar〉C and |z; q; ar〉S and
corresponds to the simplest statistical property that can be evaluated about these states;

• the results for the intensity-dependent interaction model are obtained by just replacing
the cosine function argument factors by the expressions θ(C)

n (q; t) → gtE (q)
n and

θ(S)
n (q; t) → gtE (q)

2n .

4.2. Entropy and entanglement of the system

The entropy in quantum mechanics [35] is defined in terms of the density operator as
S = −Tr {ρ̂ ln ρ̂}. If ρ̂ describes a pure state this entropy vanishes (S = 0), while if ρ̂

describes a mixed state then S = 0. Therefore, entropy offers a quantitative measure of the
disorder of a system, and of the purity of a quantum state. The higher the entropy the greater
the entanglement of the system. Since for a closed system the total entropy S is constant,
in the case of a composite system we study the partial entropies of system components, such
as the atom and the quantum-deformed coupling potential subsystems. These partial entropies
are defined through the corresponding reduced density operators by

S
(X)
A (q; t) = −TrA

{
ρ̂

(X)
A (q; t) ln

[
ρ̂

(X)
A (q; t)

]}
and

S
(X)
P (q; t) = −TrP

{
ρ̂

(X)
P (q; t) ln

[
ρ̂

(X)
P (q; t)

]}
.

(52)

Note that the operation of tracing over part of the variables of the whole system means that
ρ̂

(X)

A(P)(q; t) is no longer governed by a unitary time evolution and consequently S
(X)

A(P)(q; t) is
no longer time independent. This implies that the composite system can evolve from a pure
to a mixed state and vice versa with oscillations in the subsystem entropy.

Taken as a whole, the two-level atom coupled to a one-dimensional quantum-deformed
shape-invariant system in an overall pure state constitutes a bipartite quantum system in a
Hilbert space with the tensor product structure E = EA⊗ EP. For these conditions the Araki
and Lieb theorem [36] is valid and if the combined system begins as a pure quantum state
(that is, the total entropy of the system is equal to zero), then at t > 0 the partial entropies of
the subsystems are precisely equal. On the other hand, since the trace of an operator depends
only on its eigenvalues and is invariant under a similarity transformation, we can go to a basis
in which ρ̂

(X)
P (q; t) is diagonal to evaluate the partial entropy of the coupling potentials using

S
(X)
P (q; t) = −{

λ
(X)
− (q; t) ln

[
λ

(X)
− (q; t)

]
+ λ(X)

+ (q; t) ln
[
λ(X)

+ (q; t)
]}

(53)

obtained from equation (52), where λ
(X)
± (q; t) are the eigenvalues of ρ̂

(X)
P (q; t). Considering

the eigenvalue equation ρ̂
(X)
P (q; t)

∣∣ζ (X)
± (q; t)

〉 = λ
(X)
± (q; t)

∣∣ζ (X)
± (q; t)

〉
and expression (46) of

ρ̂
(X)
P (q; t) we expect that eigenstates have the form

∣∣ζ (X)
± (q; t)

〉 = αC
∣∣C(q)

X (t)
〉
+ αD

∣∣D(q)

X (t)
〉

so
that

ρ̂
(X)
P (q; t)

∣∣ζ (X)
± (q; t)

〉 = 1

N (q)

X

(〈
C(q)

X (t)
∣∣C(q)

X (t)
〉
+

αD

αC

〈
C(q)

X (t)
∣∣D(q)

X (t)
〉)

αC
∣∣C(q)

X (t)
〉

+
1

N (q)

X

(〈
D(q)

X (t)
∣∣D(q)

X (t)
〉
+

αC

αD

〈
D(q)

X (t)
∣∣C(q)

X (t)
〉)

αD
∣∣D(q)

X (t)
〉

(54)

10
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and, consequently for
∣∣ζ X)

± (q; t)
〉

to be an eigenstate of ρ̂
(X)
P (q; t), we need to satisfy the

condition

N (q)

X λ
(X)
± (q; t) = 〈

C(q)

X (t)
∣∣C(q)

X (t)
〉
+

αD

αC

〈
C(q)

X (t)
∣∣D(q)

X (t)
〉

= 〈
D(q)

X (t)
∣∣D(q)

X (t)
〉
+

αC

αD

〈
D(q)

X (t)
∣∣C(q)

X (t)
〉
. (55)

Using this relation and that
〈
C(q)

X (t)
∣∣C(q)

X (t)
〉

+
〈
D(q)

X (t)
∣∣D(q)

X (t)
〉 = N (q)

X we can show, after
some calculations, that

λ
(X)
± (q; t) = 1

2

(
1 ± 1

N (q)

X

√{〈
C(q)

X (t)
∣∣C(q)

X (t)
〉 − 〈

D(q)

X (t)
∣∣D(q)

X (t)
〉}2

+ 4
∣∣∣〈C(q)

X (t)|D(q)

X (t)〉
∣∣∣2

)
.

(56)

To get the final expression for the factors that appear in (56), we can use the relation
K̂qK̂†

q = K̂†
qK̂q = 1̂1 and equations (44) and (50) to obtain

1

N (q)

X

{〈
C(q)

X (t)
∣∣C(q)

X (t)
〉 − 〈

D(q)

X (t)
∣∣D(q)

X (t)
〉} = −〈ŴX(q; t)〉. (57)

With the help of equations (12), (17), (32), (36), (37) and (44), we can also show that
〈C(q)

S (t)|D(q)

S (t)〉 = 0 and

1

N (q)

C

∣∣〈C(q)

C (t)
∣∣D(q)

C (t)
〉∣∣ =

∣∣∣∣∣zZ(q)

r−1

∞∑
n=0

p(C)
n (q)

φ
(q,C)
n

cos
{
θ(C)
n (q; t)

}
sin

{
φ(C)

n (q; t)
}∣∣∣∣∣ where

φ(C)
n (q; t) = gt

√
A(q)

n (58)

where we took into account the auxiliary relations A(q)
n − E (q)

n = A(q)

0 and T̂ †E (q)

n+1T̂ = A(q)
n ,

as well as T̂ †b(C)
n+1(q; ar)T̂ = zZ(q)

r−1b
(C)
n (q; ar)

/√
A(q)

n , which can be established after some
algebra.

The partial entropy for the case of an intensity-dependent interaction Hamiltonian can be
obtained with the same procedure presented in the previous section by replacing the factors:
θ(C)
n (q; t) → gtE (q)

n and θ(S)
n (q; t) → gtE (q)

2n .
We note that to apply our general approach for a given quantum deformed and shape-

invariant coupling potential we need to specify only the eigenvalue spectra A(q)
n and E (q)

n as
well as the expansion coefficients b(X)

n (q; ar) related to the initial state of the system. Using
these informations we obtain the function argument factors θ(X)

n (q; t) and φ(C)
n (q; t) and the

expansion weight p(X)
n (q) to be used in the calculation of the observables 〈ŴX(q; t)〉 and

S
(X)
P (q; t). Due to the higher dimensionality of the problem it is not possible to obtain simple

analytical expressions for the series related to the observables 〈ŴX(q; t)〉 and S
(X)
P (q; t),

requiring a numerical approach. The numerical evaluation of series is a nontrivial problem
and in the application of the next section we used the Smith [37] routines package of multiple
precise computation.

5. An application for a quantum deformed Pösch–Teller potential system

As a specific example we consider in this section the coupling of the two-level atom with a
quantum deformed Pösch–Teller Potential system. This potential was originally introduced in
a molecular physics context [38] and is closely related to several other potentials widely used in
molecular and solid state physics. Besides that the Pöschl–Teller potential, in its trigonometric

11
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form, presents the interesting property of represents the infinite square well as a special limit
[39]. We consider the partner potentials V±(x) for the trigonometric Pöschl–Teller system [40]
obtained with the superpotential W(x, a1) = √

h̄�(βa1 cot βx + δ csc βx) where a1, β and δ

are real constants. In this case the remainders involved with the shape invariance condition (3)
are given by R(a1) = β2η(2a1 + η) and the potential parameters are related by an+1 = an + η,

with η = √
h̄/(2M�). Using these facts in (4) we find the eigenvalue factor en with the form

en = κn(n + γ ) where κ = (βη)2 and γ = 2a1/η. Considering the above remainder relation,
it is easy of verify that if we define Fq = qβ2a2

0 , then the constraint presented in (8), related to
the preservation of the shape invariance of the primary system after the quantum deformation
process, is satisfied because

qR(a0)Fq = qβ2(a2
1−a2

0 )qβ2a2
0 = qβ2a2

1 = T̂ qβ2a2
0 T̂ † = T̂Fq T̂

†. (59)

Then using the expression of en we can calculate the eigenvalues A(q)
n and E (q)

n in (14) and
(15), obtaining

A(q)
n = q

1
2 κ(γ−2)2

qκ(n+1)(n+γ−1)[κ(n + 1)(n + γ − 1)]q and

E (q)
n = q

1
2 κγ 2

qκn(n+γ )[κn(n + γ )]q .
(60)

Similarly using the expressions of en and Fq in (37) and (38) we can show that

n−1∏
k=0

√
�

(S)
nk (q) = q−κn(2n+γ +1)

√√√√ (
γ, 0; q8κ

)
n(

γ, 1
2 ; q8κ

)
n

and (61)

n−1∏
k=0

√
�

(C)
nk (q) = q

1
2 n{κ[ 1

3 (n−1)(2n+3γ−1)+ 1
2 γ 2]+1}

√
(γ, 0; q2κx)n

(1 − q2)n
(62)

where we used the two-parameter generalization of the q-shifted factorial (a, b; q)n, defined
as [33, 34]

(a, b; q)0 = 1 and (a, b; q)n =
n−1∏
k=0

(
1 − q[n(n+a)−(k+b)(k+a+b)]) ,

when n = 1, 2, 3, . . . (63)

To explore the construction of purely coherent states for quantum-deformed shape-
invariant systems, we introduce the generalizing functional with the simple form Z(q)

s =
Zqq

αR2(a1), where α and Zq are real constants. Using the recurrence relation R(ak) =
κ(2k + γ − 1) we find that

n−1∏
k=0

Z(q)

r+k = Zn
q qακ2n[ 2

3 (n−1)(2n+3γ +2)+(γ +1)2] and

n−1∏
k=0

Z(q)

r+2k = Zn
q q4ακ2n[ 1

3 (n−1)(4n+3γ +1)+ 1
4 (γ +1)2].

(64)

Taking into account these results and using (62) in (37) and (61) in (38) we find for the
expansion coefficients (40) the expressions

∣∣b(C)
n (q; ar)

∣∣2 = [|zZq |2(1 − q2)q�c ]nqϑ
(c)
n

(γ, 0; q2κ )n
and

∣∣b(S)
n (q; ar)

∣∣2 = [|zZq |2q�s ]nqϑ
(s)
n

(
γ, 1

2 ; q8κ
)
n

(γ, 0; q8κ )n
,

(65)
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Figure 1. The distribution of probability p
(C)
n (q) of finding the deformed coupling potential system

in the quantum state |n〉 as a function of the deformation parameter q.

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�c = κ

2

[
(δ − 1)

(
γ 2 − 1

3

)
+ 2γ − 1

]
− 1, ϑ(c)

n = κn2

[
(δ − 1)

(
2

3
n + γ

)
+ 1

]

�s = κ

2

{
δ

[(
γ − 1

2

)2

− 1

3

]
+ 4(γ + 1)

}
, ϑ(s)

n = κn2

{
2

3
δn +

[
1

2
δ(γ − 1) + 4

]}
(66)

with δ = 4ακ.

In the figures we present the numerical results obtained for this application using the set
of constants: α = 26, γ = 1.01, κ = 0.01 and zZq = 1. Figure 1 displays the distribution
of probability p(C)

n (q) of finding the deformed coupling potential system in the quantum state
|n〉 as a function of the deformation parameter q, when the initial state of the potential system
is the purely coherent state. It should be noted that p(C)

n (q) shows: (i) a broader and lower
distribution centered in n ≈ 26 for lower values of the deformation parameter (0.0 < q < 0.2);
(ii) a sharper and higher distribution centered in n ≈ 5 for higher values of the deformation
parameter (0.6 < q < 1.0); (iii) two lower concentration regions centered in n ≈ 5 and
n ≈ 26 for intermediate values of the deformation parameter (0.2 < q < 0.6). This change
in the behavior of p(C)

n (q) with the values of q will be responsible for interesting behavior of
the atomic population inversion factor and the potential partial entropy.

In figure 2 we plot, in a three-dimensional waterfall layout, the population inversion
factor 〈ŴC(q; t)〉 in terms of the time variable τ = 2gt for the deformation parameter values
q = 0.2, 0.4, 0.6 and 0.999. To make comparison of the results obtained using different values
of q easier, we fill the area under each curve. To understand the time behavior of 〈ŴC(q; t)〉,
we observe that each term in the sum (50) has a different frequency, and as the time increases
they become uncorrelated and interfere destructively, causing a collapse [〈ŴC(q; t)〉 ≈ 0].

13
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Figure 2. The population inversion factor 〈ŴC(q; t)〉 in terms of the time variable τ = 2gt

calculated for the deformation parameter values q = 0.2, 0.4, 0.6 and 0.999.

Figure 3. The three-dimensional plot of the population inversion factor 〈ŴC(q; t)〉, as a function
of the time variable τ and the deformation parameter q.

The discrete character of the sum over the quantum states in the coherent states ensures that,
after some finite time, all the oscillating terms come back almost in phase with each other,
restoring the coherent oscillations and creating periodic revivals (periodic packets of finite
〈ŴC(q; t)〉 oscillations). However, as the frequencies are not necessarily integers and thus
may be incommensurate, the re-phasing is not perfect and the revivals get broader and broader.
The periodic behavior of the cosine function in time, the expression of its argument and its
dependence on the coupling potentials en factors define the form and the periodicity of these
events in 〈ŴC(q; t)〉. In our coupled system, appearance of time periodic collapse and revival
events in 〈ŴC(q; t)〉 is well defined when q ≈ 1. With the reduction of the value of q the
number of events is getting reduced and concentrated in the region of lower values of τ . For
higher values of τ the pattern with collapse and revival events is gradually substituted by
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Figure 4. Time evolution of the coupling potential partial entropy S
(C)
P (q; t), calculated for the

deformation parameter values q = 0.2, 0.4, 0.6 and 0.999.

a complex oscillating pattern. This tendency is clearly visualized in figure 3 that shows a
three-dimensional plot of the population inversion factor 〈ŴC(q; t)〉 as a function of τ and
q with (0.6 � q � 0.999). For q values lower than 0.5 the collapse and revival events
disappear being substituted by Rabi oscillations with a non-defined envelope pattern. Finally,
for very low values of the deformation parameter (q < 0.3) these resulting Rabi oscillations
in 〈ŴC(q; t)〉 assume a standard pattern with a constant unity amplitude. The behavior of
the distribution of probability p(C)

n (q) with q shown in figure 1 is essential to understand the
behavior of 〈ŴC(q; t)〉 observed in figures 2 and 3.

In figure 4, we show, also in a three-dimensional waterfall layout, the coupling potential
partial entropy S

(C)
P (q; t) in terms of the time variable τ = 2gt for the same set of values of the

deformation parameter q used in figure 2 for the 〈ŴC(q; t)〉 case. As we see from the figure,
for q ≈ 1 the system starts in a pure quantum state when the coupling potential is completely
disentangled from the two-level atom

{
S

(C)
P (q; 0) = 0

}
, but as it evolves the coupling starts

to play a role and, after a sequence of few oscillations, the entanglement increases rapidly
reaching its maximum value {Smax ≈ 0.693} and the system reaches a mixed quantum state.
This maximum value, characteristic of the maximally correlated system, is obtained when the
square root factor in (56) goes to zero and λ

(C)
+ (q; t) → λ

(C)
− (q; t) → 1

2 . For these conditions

equation (53) gives the value S
(C)
P (q; t) → ln 2 ≈ 0.693. This result is still valid for the

bipartite quantum system in general. After reaching the strongest entanglement the coupled
system sustains this maximum level for a long time before fluctuations start to appear again.
This pattern of short-time oscillations, where the system roughly returns some times to pure
quantum states, followed by long time strongest entanglement plateau is repeated with a period
of �τ ≈ 60. The entanglement of the coupled system drastically changes its time behavior
for lower values of q. The strongest entanglement plateaus disappear gradually, substituted by
a rapid oscillation structure with a well-defined period and a fluctuating amplitude, which are
dependent on the value of q. For very low values of the deformation parameter (q < 0.3) the
resulting oscillations in S

(C)
P (q; t) present a pattern resulting from the combination of a small-

and a large-amplitude oscillation structures. In this oscillating regime the coupled system
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Figure 5. The population inversion factor 〈ŴS(q; t)〉 in terms of the time variable τ calculated for
the deformation parameter values q = 0.2, 0.6, 0.9 and 0.999.

reaches many times the state of complete disentanglement
{
S

(C)
P (q; t) = 0

}
and a state of

strong entanglement
{
S

(C)
P (q; t) ≈ 0.65Smax

}
.

When we compare figures 2 and 4 it is easy to recognize some resemblance in the pattern
of the oscillations of the two observables. The oscillations in both are localized for the same
duration but the number of them is twice in S

(C)
P (q; t) because their period in this observable

is around one-half of the period of the oscillations in the inversion population factor. The
strongest entanglement plateaus are time coincident with the collapse events in 〈ŴC(q; t)〉.

Figure 5 is the version of figure 2 when the quantum deformed coupling potential system
is assumed in a purely squeezed state at t = 0. In the calculations for this initial condition
we used the set of deformation parameter values q = 0.2, 0.6, 0.9 and 0.999 because, unlike
the purely coherent state initial case, here the behavior of the observables changes drastically
when q ≈ 1. Salient features of 〈ŴS(q; t)〉 are: (i) the high number of oscillations in the
revival events and the imperfect collapse events (the inversion population factor presents a
slow variation in time where it should be null) when q = 0.999; (ii) the vanishing of the
collapse events and the emergence of Rabi oscillations with frequencies decreasing with the
value of the deformation parameter when q < 0.9; (iii) the weak excitation of two-level atom
when q < 0.9 (in general we found that 〈ŴS(q; t)〉 < 0.0).

In figure 6, we show the coupling potential partial entropy S
(S)
P (q; t) in terms of the

time variable τ = 2gt for the same set of values of the deformation parameter q used in
figure 5. If we compare this figure with figure 5 the verification of the resemblance in the
oscillation pattern of the two observables is immediate. The reason is the null value of the
product 〈C(q)

S (t)|D(q)

S (t)〉, which makes the eigenvalues λ
(X)
± (q; t) functions only of 〈ŴS(q; t)〉

(see equations (56) and (57)). For all values of q, we observe that, starting with the initial
disentangled state, the coupled system evolves rapidly to a strongly entangled state. When
q ≈ 1, the deviations of the maximum entanglement regime

{
S

(S)
P (q; t) = Smax

}
are restricted

only to depression regions with oscillation packets temporally coincident with the arrival
events in 〈ŴS(q; t)〉. As the value of q decreases, the oscillations in S

(S)
P (q; t) from the
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Figure 6. Time evolution of the coupling potential partial entropy S
(S)
P (q; t), calculated for the

deformation parameter values q = 0.2, 0.6, 0.9 and 0.999.

Figure 7. Same as figure 6 for an intensity-dependent interaction Hamiltonian.

maximum entanglement plateau increase their period and present a pattern of superposition of
the neighboring oscillation packets. This superposition creates the appearance of progressive
dips with increasing depth in the time. Therefore, after some time it should be possible to
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observe the coupled system returning, for a very short time, to a completely disentangled state
(a pure state, as like the initial one).

Figure 7 is the version of figure 6 for an intensity-dependent interaction Hamiltonian.
In this case the relevant aspects about the behavior of S

(S)
P (q; t) to note are: (i) the behavior

becomes increasingly erratic when q → 1 with a large number of narrow and irregular
fluctuations in the strongest entanglement plateau; (ii) as the value of q decreases the
erratic behavior of S

(S)
P (q; t) decreases and the amplitude of the oscillations showing weaker

entanglement gets more pronounced, making it possible for the coupled system to come back to
its disentangled initial quantum state after a long time. A careful observation of the behavior
of S

(S)
P (q; t) of the different values of q makes it possible to recognize some resemblance

among the results when we consider that their time scale is amplified with the reduction of
the q-value. Finally, comparison between figures 6 and 7 shows that the intensity-dependent
interaction makes the entanglement of the coupled system more complicated and without a
regular pattern when q � 0.9. However, in this case, we do not observe a visible change in the
time average of the entanglement of the coupled system when calculated with the two models.
For lower values of q the tendency changes. The entropy S

(S)
P (q; t) for an intensity-dependent

interaction presents a reduction in its fluctuations and, after going rapidly to a strong value,
the coupled system entanglement keeps this regime for a long time.

6. Conclusions

In this paper, within a supersymmetric approach, we have studied the system of a two-
level atom or molecule interacting with a quantum deformed shape-invariant potential. This
exactly soluble and fully quantum-mechanical coupled-channel model may find applications
in molecular, atomic and nuclear physics. Taking into account two possible forms of coupling
interaction (usual and intensity-dependent interaction models), we studied the quantum
dynamics of the coupled system by also considering two possible initial quantum states of the
q-deformed shape-invariant potential system [a purely coherent (X = C) and a purely squeezed
(X = S) states]. We obtained generalized expressions which give the temporal behavior of
the atomic population inversion factor 〈ŴX(q; t)〉 as well of the coupling potential partial
entropy S

(X)
P (q; t). We study the behavior of the expressions for these dynamical variables

for a quantum-deformed Pöschl–Teller coupling potential considering different values of the
deformation parameter q. The results obtained show how strongly the quantum dynamics
of the atomic excitation and the entanglement of the bipartite coupled system depend on the
quantum deformation nature of the shape-invariant coupling potential. In our application we
used a very simple form for the generalizing functional Z(q)

s related to the initial state of the
deformed coupling potential system. However our formalism is generalized enough to permit
the use of many other expressions. One should emphasize that the study of quantum-deformed
systems other than the harmonic oscillator is very recent and coupled systems involving these
potential systems are mostly unexplored.

Acknowledgments

This work was supported in part by the US National Science Foundation grant no PHY-
0555231 at the University of Wisconsin, and in part by the University of Wisconsin Research
Committee with funds granted by the Wisconsin Alumni Research Foundation.

18



J. Phys. A: Math. Theor. 41 (2008) 315302 A N F Aleixo and A B Balantekin

References

[1] Benenti G, Casati G and Strini G 2005 Principle of Quantum Computation and Information (Singapore: World
Scientific)

[2] Bennet C H, Brassard G, Crepeau C, Jozsa R, Peresand A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Ekert A 1991 Phys. Rev. Lett. 67 661

Cirac J I and Gisin N 1997 Phys. Lett. A 229 1
Fuchs C A, Gisin N, Griffiths R B, Niu C-S and Peres A 1997 Phys. Rev. A 56 1163

[4] Ye L and Guo G-C 2005 Phys. Rev. A 71 034304
Mozes S, Oppenheim J and Reznik B 2005 Phys. Rev. A 71 012311
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